
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2020 

CN and CCN and C22  Spectroscopy on the Pulsed Ablation of Graphite in the Spectroscopy on the Pulsed Ablation of Graphite in the 

Visible Spectrum Visible Spectrum 

Brandon A. Pierce 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Materials Science and Engineering Commons, and the Plasma and Beam Physics 

Commons 

Recommended Citation Recommended Citation 
Pierce, Brandon A., "CN and C2 Spectroscopy on the Pulsed Ablation of Graphite in the Visible Spectrum" 

(2020). Theses and Dissertations. 3892. 
https://scholar.afit.edu/etd/3892 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=scholar.afit.edu%2Fetd%2F3892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=scholar.afit.edu%2Fetd%2F3892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=scholar.afit.edu%2Fetd%2F3892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3892?utm_source=scholar.afit.edu%2Fetd%2F3892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


www.manaraa.com

CN and C2 Spectroscopy on Pulsed Laser
Ablation of Graphite in the Visible Spectrum

THESIS

Brandon A. Pierce, 2d Lt, USAF

AFIT-ENP-MS-20-M-111

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



www.manaraa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



www.manaraa.com

AFIT-ENP-MS-20-M-111

CN AND C2 SPECTROSCOPY ON PULSED LASER ABLATION OF

GRAPHITE IN THE VISIBLE SECTRUM

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Physics

Brandon A. Pierce, B.S. Physics

2d Lt, USAF

March 6, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



www.manaraa.com

AFIT-ENP-MS-20-M-111

CN AND C2 SPECTROSCOPY ON PULSED LASER ABLATION OF

GRAPHITE IN THE VISIBLE SECTRUM

THESIS

Brandon A. Pierce, B.S. Physics
2d Lt, USAF

Committee Membership:

Dr. Kevin C. Gross
Chair

Dr. Glen P. Perram
Member

Dr. Christopher A. Rice
Member



www.manaraa.com

AFIT-ENP-MS-20-M-111

Abstract

An experimental study was conducted on the pulsed laser ablation of graphite. Op-

tical emissions spectroscopy and gated ICCD imagery were used to characterize the

plume dynamics, which are important for laser weapon effects with the increase in

variety of tactical missions for laser weapons systems. The dynamics of the graphite

ablation have been studied extensively; however, the lack of agreement on the mech-

anisms warrants further investigation. This research was intended to gain a deeper

understanding of the fundamental mechanisms driving these processes.

The shock fronts were analyzed using the ICCD gated imagery with various filters

to limit the species being investigated. Initial shock front velocities were on average

1.46 cm/µs using the drag model to fit the shock fronts. The stopping distance of

the drag model varied from 0.5 cm to 1.6 cm based on background gas and pressure.

Lowering the background pressure by a factor of 10 tripled the stopping distance

and increased the initial velocity by 20%. The Taylor-Sedov model was also fit to the

shock fronts and yielded on average an n = 1.74, suggesting the shock front expansion

is between the plane wave (n = 1) and cylindrical wave (n = 2) limits.

Graphite samples were irradiated with 151 MW/cm2 and a fluence of 3.8 J/cm2

using a pulsed KrF 248 nm laser with a pulse width of 25 ns. Optical emission

spectroscopy showed the C2 Swan ∆v = 0, ±1, ±2 sequences and the CN Violet ∆v =

0, +1 sequences. Spectroscopic models were developed to extract the rovibrational

temperatures of each molecule for t = 0− 10 µs after laser irradiation in a variety of

background gases. The background gases used were Air, Ar, He, and N2 at 10 Torr

and also at 1 Torr for N2. For the C2 Swan band, the temperatures ranged between

TR = 3, 700 − 6, 000 K and Tv = 3, 000 − 7, 000 K, respectively. The rotational and

iv
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vibrational temperatures for the CN Violet ranged between TR = 3, 500 − 6, 000K

and Tv = 7, 000− 12, 000 K, respectively. The rovibrational temperatures were found

to vary with background pressure for the CN Violet system, but not for the C2 Swan.

In general, the rotational temperatures, TR, and the vibrational temperatures, Tv,

were not in equilibrium.

v
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CN AND C2 SPECTROSCOPY ON PULSED LASER ABLATION OF

GRAPHITE IN THE VISIBLE SECTRUM

I. Introduction

Studying the pulsed laser ablation (PLA) of graphite has multiple important De-

partment of Defense (DoD) applications as well as scientific and industrial applica-

tions. The increased variety of tactial missions for laser weapons systems is driving

a need in the Department of Defense for understanding a variety of laser-material

interactions [1]. Carbon is a particularly important material due to the use of carbon

fibers and other carbon based materials in many aerospace systems. Understanding

the PLA of graphite will serve as the foundation for understanding more complex

carbon based materials. The spectroscopy of the resulting plume is also a high in-

terest area for the DoD due its applicability to the hypersonic community because

the radiometric signatures of hypersonics are difficult to simulate in the lab environ-

ment [2]. However, the PLA of graphite results in high mach numbers which can be

used to study the chemistry in the boundary layer of ablated carbon and background

gas, which is also important for thermal protection system design.

A historical review of the mechanisms and processes governing the pulsed laser

ablation of graphite as well as the resulting plume will show that there are inconsistent

results. Most of the research in this area came from a materials processing standpoint.

Many laser based materials processing applications such as coating and thin film

deposition [3, 4] and synthesizing nanoparticles and nanostructures [5–7] are driven

by the process of ablation. The research helped the industry become more predictive

in the processes used to make these various materials [8,9]. However, the fundamental

1
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underlying processes were discussed much less. The purpose of this research is to use

the plume dynamics and optical emissions spectroscopy (OES) in order to inform on

some of the mechanisms driving the pulsed ablation of graphite in the pulsed laser

nanosecond regime.

Chapter II of this work will outline a few fundamental principles to shed light

on the processes governing the pulsed ablation of graphite in the nanosecond time

domain. Diatomic spectroscopy for C2 and CN as well as shock modeling for plumes

will also be detailed here.

Chapter III of this study describes the experiment that was done to obtain the

optical emission spectra and gated ICCD images. The models developed in PGO-

PHER to simulation the rovibrational temperatures of the species in the plume are

also detailed here.

Chapter IV of this study discusses the results of the simulations as well as the

shock front model results. The rovibrational temperatures as well as the intensities of

various species in the plume are discussed. The results from fitting the Taylor-Sedov

mode and the drag model to the shock front data is also presented here.

2
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II. Background

Studying the pulsed laser ablation of graphite requires almost every foundational

piece of physics, which is in some ways its beauty. An understanding of optics is

required to focus the laser onto the material. The energy transfer into the material

requires knowledge of materials science. The laser interaction with the surface as

well as the resulting plasma is governed by electrodynamics. The rich spectroscopy

is governed by quantum mechanics and statistical mechanics. The propagation of

the plume can be partially understood with dynamics. The goal of this background

section is to give a glimpse into each complexity that arises when attempting to

understand the PLA of graphite. In Section 2.1, the laser material interaction will

be discussed along with various properties of graphite. Section 2.2 discusses how

the plume propagates into the background medium. Section 2.3 discusses diatomic

spectroscopy and some of the notation associated with the field.

2.1 Laser Material Interactions

Clearly one of the greatest innovations in modern history, the laser has continued

to have new applications since its inception. The theory was first developed by

Einstein in 1917 [10]. Forty years later, Maiman developed the first pulsed laser [11].

Since then, the laser, both continuous and pulsed varients, has continued to be used

in a plethora of domains.

It did not take long before pulsed lasers were used for material removal. Pulsed

laser ablation is the material removal process for nanosecond and pico-/ femtosec-

ond lasers. It is has a variety of applications including cleaning surfaces (such as

artwork) from particultes [12,13], various surgical/medical procedures [14–16], micro-

patterning of materials [17], chemical analysis (such as Laser Induced Breakdown

3
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Spectroscopy (LIBS) or Laser Ablation Molecular Isotopic Spectrometry (LAMIS)),

and the deposition of thin films [4,6,7,18]. The pulsed laser ablation of graphite has

been extensively studied for various applications; however, pulsed laser deposition

(PLD) is often the main area of focus when graphite is involved in order to create

various thin films such as diamond-like carbon (DLC) films. The laser material inter-

actions vary significantly based on pulse duration, but for this thesis, the focus will

be on nanosecond pulse widths.

When the laser beam reaches the surface of the solid before the plume is ejected,

a portion is reflected due to the discontinuity in the index of refraction, while the

rest is transmitted into the material. The portion reflected on the surface depends

on the polarization and the angle of incidence (The reflection coefficients can be

calculated from the standard Fresnel equations [19]). These coefficients depend on

surface properties such as smoothness and level of surface oxidation, which can give a

range of values. Once in the material, the Beer-Lambert law governs light absoprtion

I(z) = I0e
−αz (1)

where I0 is the intensity just inside the surface, z is the depth, and α is the material’s

absorption coefficient. This assumes a constant α, but α is typically a function of

wavelength and temperature. The absorption coefficient of bulk graphite (Goodfellow,

99.95% purity, pressed from 1–5 lm size crystalline grains) was studied under various

conditions including pulsed laser heating and was found to be 15.27 µm−1 [20]. A

convenient optical parameter to define is the optical absorption or penetration depth,

lα = 1/α [21]. The optical absorption depth is the depth where the intensity drops

to 1/e (the e-folding length) of its initial value. In the case of graphite at a 248 nm

wavelength, lα = 1/15.27 = 0.0655 microns.

In the nanosecond region of pulsed ablation, the laser pulse duration is much longer
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than the lattice heating time. The thermal properties of the material are therefore

important because the material is heated as the laser energy is absorbed. The thermal

properties are described by the specific heat per unit mass CP , the density ρ, and

the thermal conductivity κ. For the graphite targets, κ = 140 W/m K [22]. The

heat diffusivity is then defined as D = κ
CP ρ

[21], and a characteristic length for heat

diffusion can be defined as

lD ≈ 2
√
Dτp (2)

where τp is the laser pulse duration. The characteristic length describes how much the

heat traverses through the material during the laser irradiation. At a temperature of

3500 K, the specfic heat graphite is CP = 2135 J/kg K [23]. With these parameters

and a theoretical density of 2250 kg/m3 [22], the diffusivity is aproximately D =

2.91×10−5 m2/s. The theoretical density is used because the actual density can vary

a large amount as shown by Bauer [24]. In fact, most of these material properties

vary widely due to porosity and how the graphite was actually manufactured. These

values are used to give an estimate. Thus, the characteristic length is lD = 1.71 µm

assuming a pulse width of τp = 25 ns. For graphite, the phase transition skips the

liquid phase and sublimates directly to the gas phase. ∆Hs describes the enthalpy of

sublimation, where the energy becomes large enough such that the solid transitions

directly from a solid to a vapor. Sublimation is often observed in the pulsed laser

ablation of graphite [25]. The enthalpy of sublimation for graphite at T = 2500 K

is approximately ∆Hs = 176 kcal/mol or 736.4 kJ/mol [26]. The temperature of

sublimation for graphite at 1 atm is approximately 3958 K [27]. Table 1 summarizes

all of these constants for graphite.

Because the lattice has time to transfer heat, the laser energy is deposited into

the region dependent on lD. Knowing this, an estimated threshold fluence can be
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Table 1. Various pertinent material properties of graphite

Graphite Material Parameters

α (µm−1) 15.27 [20] D (m2/s) 2.91× 10−5

lα (µm) 0.0655 lD (µm) 1.71
κ (W/m K) 140 [22] τp (ns) 25
CP (J/kg K) (at T=3500 K) 2135 [23] TS (K) 3958 [27]
ρ (kg/m3) 2250 [22] ∆Hs (kJ/mol) 736.4 [26]

calculated,

Fth = ρHslD (3)

where ρ(g/cm3) is the density of the material, Hs(J/g) is the heat of sublimation, and

lD(cm) is the diffusion length. A zeroth order assumption would be the ablated mass

can be calculated from the volume described by the laser spot size and the diffusion

length, lD. Because the laser spot size is much larger than the diffusion length, there

is no transverse heat flow. However, it is known that material redeposition is very

common in nanosecond pulsed ablation [18]. Another way to estimate it is using the

imagery data. Section 2.2 will detail the plume dynamics; however, this calculation

only requires knowing the initial expansion velocity of the plume. Knowing that will

yield an estimate for the kinetic energy per particle. Using that and the heat of

sublimation can give at least an upper bound on the ablated mass, ma,

ma =
Ep

1
2
mv2

i +Hs

M

NA

(4)

where Ep is the energy per pulse of the laser, m is the mass of the particle (i.e. a

carbon atom), vi is the initial plume velocity, Hs is the heat of sublimation in units

of energy per particle, NA is avogadro’s number, and M is the Molar mass.

6



www.manaraa.com

2.2 Plume Dynamics

As the plume is forming, the laser is still on, and an additional high-pressure region

is developed from the plume excitation by the laser. Singh describes the dynamics first

as a plasma formation, heating, and inital three dimensional isothermal expansion,

which is then followed by adiabatic expansion after the laser has terminated [3]. As

the plume is expanding into the background gas, a shock front forms. There are

various shock models that can be used. One of which is known as the Taylor-Sedov

model, which states the position of a shock front can be calculated from [28]

R(t) = ξ
(E
ρb

) 1
n+2

t
2

n+2 (5)

where t is the time delay, ρb is the background gas density, E is the energy released

during the blast, and ξ is a constant which depends on the specific heat capacity

ratio (ξ = 1.49 (n = 1), ξ = 1.77 (n = 2), ξ = 1.15 (n = 3)) [29]. The value of

n is either 3, 2, or 1 for spherical, cylindrical, or plane wave shock propagation. In

general, Eq. 5 can be fit using the functional form R(t) = atb. Previous research has

shown good agreement with shock fronts resulting from pulsed laser ablation [28].

The Taylor-Sedov model is typically valid in the mid-field limit. This occurs when

the ablated mass is less than the amount of mass displaced by the expanding shock

and when the pressure of the background gas is less than the pressure behind the

shock front [29]. This can be captured consisely with the following limits,

zL =
(3ma

2πρ

)1/3

� z �
(2Ep
Pb

)1/3

= zH (6)

where ma is the ablated mass, ρ is the background gas density, Ep is the laser energy

of a pulse, and Pb is the background gas pressure.

Another model that can be used to describe the shock front is the drag model.

7
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The drag model states the position of the shock front is described by

R(t) = Rs(1− e−kt) (7)

where Rs is the stopping distance and k is the slowing coefficient. It predicts the

plume will come to a halt due to collisions with the background gas at some stopping

distance. Consider the derivate at t = 0 for the drag model,

dR

dt

∣∣∣∣
t=0

= v0 = kRse
−kt∣∣

t=0

= kRs.

Thus, fitting to this model yields an estimate of the initial free streaming velocity.

Velocities on the order of 1 cm/µs are fairly typical [18,30,31].

2.3 Diatomic Spectroscopy

The following section details a review of the basic molecular spectroscopy of C2 and

CN. Term symbols, which are a schema for effectively naming states in an organized

fashion. Electronic states for diatomic atoms can be described by the term symbol

2S+1Λ
(+/−)
Ω,(g/u) where S is the total spin quantum number, Λ is the projection of the

orbital angular momentum onto the internuclear axis (Λ =
∑
λi), Ω is the projection

of the total angular momentum onto the internuclear axis, g/u is the parity (for

homonuclear diatomics), and +/− is the reflection symmetry. Figure 1 details the

various angular momentum for a diatomic molecule and shows the projections that

are included in the term symbols. The selection rules for allowed transitions are as

follows: ∆Λ = 0,±1, ∆S = 0, ∆Σ = 0 (for Hund’s case (a)), ∆Ω = 0,±1, g ↔ u, and

+↔ +(− ↔ −) [32]. The energy levels are described by a combination of electronic,

8
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Figure 1. Diagram of the angular momenta present in a diatomic molecule for a Hund’s
case (a). (Recreated from [32])

vibrational and rotational in the following manner

E = Te +G(v) + Fv(J) (8)

where Te is the electronic energy (the potential minimum), G(v) is the vibrational

energy, and Fv(J) is the rotational energy. Each electronic transition is composed of

vibrational bands. These vibrational bands are then made up of rotational lines. Te

is simply the energy at v = 0 state for a given electronic energy level. The vibrational

energy for a particular v is the usual expression [33]

G(v) = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ... (9)

The vibrational bands with the same ∆v form a sequence (i.e., the ∆v = 0 sequence

is composed of the 0–0, 1–1, 2–2,... bands). A series of bands that share a simi-

lar vibrational level (1–1, 1–2, 1–3, ...) is called a progression. The intensities for

different vibrational bands depends upon the strength of the electronic transition,

9
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the population in the vibrational levels, and the Franck-Condon factor, which is the

squared overlap integral of the two vibrational wavefunctions. Of course, this neglects

the rotational structure, but the rotational structure can vary based up what type of

transition is occuring.

In the most general case, a non-rigid, vibrating symmetric top can be used to give

an equation for the rotational energy:

Fv(J) = BvJ(J + 1)−DvJ
2(J + 1)2 + ... (10)

where Bv is the rotational constant for a given vibrational level and Dv is the cen-

trifugal term [33]. It is worth noting that the convention of Herzberg is followed here

where the (A − Bv)Λ
2 term is neglected because it is a constant for a given vibra-

tional level and can thus be included in the band origin [33]. The rotational constant

is defined as

Bv = Be − αe(v +
1

2
) + γe(v +

1

2
)2 + δe(v +

1

2
)3 + ... (11)

The selection rules for allowed rotational transitions are ∆J = 0,±1 (∆J = 0 is

forbidden if Λ = 0 for both electronic states) [33]. There are thus typically three

branches associated with each vibrational transition: the P branch (∆J = −1), the

Q branch (∆J = 0), and the R branch (∆J = +1). More specifically, we’ll deal with

the rotational structure for each transition that is studied during the experiment,

namely the C2 Swan bands (d3Πg - a3Πu) and the CN violet ( B2Σ+–X2Σ+). The

rotational structure will depend on how the various angular momenta are coupled

together. Hund’s cases are used to describe the ways in which different angular

momenta in the molecule couple. There are various cases denoted Hund’s case (a),

case (b), case (c), case (d), and case (e). For the purposes of this thesis, Hund’s

10
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Figure 2. Energy Level Diagram for a3Πu state of C2 depicting a Hund’s case (a)
example. (Not to Scale) (Adapted from [34])

case (a) and case (b) are the only two that need to be discussed in detail. Hund’s

case (a) is a case in which the electronic motion (S and L) is coupled strongly to the

nuclear axis, but the interaction of the nuclear rotation with the electronic motion is

weak [33]. Thus, Λ, Σ and Ω are good quantum numbers. Ω and the nuclear rotation

vector, R, couple to give J. A good example of this is the a3Πu state of C2, which is

Hund’s case (a) at low J [34]. With Λ = ±1 and Σ = −1, 0, or +1, the values of |Ω|

can be 0, 1, or 2. The resulting states are 3Π0, 3Π1, and 3Π2. A qualitative energy

level diagram for this is shown in Figure 2. For a case (a) state, the levels are best

described as being split into Ω components with a progression of J values within each

component.

For Hund’s case (b), the electron spin S is not coupled to the internuclear axis at

all, which means Ω is not well defined. The angular momenta Λ and R combine to

form N, and N is a good quantum number. Then, N combines with S to form J as

shown in Figure 3. The energy levels are affected by the value of N the most. Then,

they split slightly into spin components. An example of Hund’s case (b) is the CN

B2Σ+ state, and its energy levels are shown in Figure 4.

11



www.manaraa.com

Figure 3. Vector diagram of the angular momenta present in a diatomic molecule for
a Hund’s case (b). (Adapted from [33])

It is well known that the PLA of graphite produces the molecular species C2.

The most common observed transitions for C2 during PLA of graphite are from the

Swan system, which involves the electronic transition d3Πg – a3Πu [35–38]. This

system, named after William Swan, is particularly important in astronomy, materials

science, and combustion science [39]. The swan system has been observed in comets,

the Sun, carbon stars, K-, M-, and S-type stars, brown dwars and even extrasolar

planets [41–45]. In the material science domain, the C2 Swan system is often used as

a diagnostic for the production of carbon nanotubes as well as thin film productions

[4, 6, 7, 46, 47]. The Swan system is also used in combustion science because it found

in flames. It helps in studying various hydrocarbon flames and modeling processes

[48–50]. The d3Πg electronic state is located 19,378.5 cm−1 above the a3Πu state as

shown in Figure 5. The upper electronic state has a smaller equilibrium internuclear

distance than the lower state as shown in Table 2, which details all the equilibrium

constants for the upper and lower states. Thus, we can expect band heading to occur

in the P branch.

12
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Figure 4. Energy Level Diagram for B2Σ+ state of CN depicting a Hund’s case (b)
example. (Not to scale) (Adapted from [34])
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Figure 5. Potential energy surfaces for the a3Πu and d3Πg electronic states of C2. The
v = 0− 2 vibrational states are shown for each state. (Adapted from [40])

There are also transitions that occur from the emission of CN in the UV-VIS-NIR.

In the PLA of graphite, the most commonly observed transition is the CN Violet
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Table 2. Equilibrium constants (in cm−1) for a3Πu and d3Πg states of C2. (Adapted
from [51])

Spectroscopic Constants a3Πu d3Πg

Te................................ ... 19378.46446(30)
ωe ............................... 1641.341(23) 1789.094(21)
ωexe ............................ 11.6580(58) 17.367(15)
ωeye ............................ -0.00083(41) -0.1360(36)
ωeze ............................ ... -0.04878(25)
Be ............................... 1.63235(4) 1.75542(9)
αe ............................... 0.01657(3) 0.0196(1)
γe ............................... -0.000027(5) -0.00013(4)
δe ................................ ... -0.000082(3)
re(Å) .......................... 1.311946(16) 1.265122(32)

Table 3. Equilibrium constants (in cm−1) for X2Σ+ and B2Σ+ states of CN. (Adapted
from [52])

Spectroscopic Constants X2Σ+ B2Σ+

Te................................ ... 25752.590(12)
ωe................................ 2068.68325(99) 2162.223(30)
ωexe............................. 13.12156(45) 19.006(22)
ωeye............................. -0.005426(74) -0.1346(65)
ωeze............................. -9.82(40)E-5 -0.03673(85)
ωeηe............................. ... 0.001430(37)
Be................................ 1.8997872(28) 1.96797(41)
αe................................ -0.0173802(27) -0.01881(18)
γe................................ -2.235(69)E-5 -0.000643(16)
δe................................ -6.64(48)E-7 ...
re(Å)........................... 1.17180630(86) 1.15133(12)

(B2Σ+–X2Σ+) [5, 35, 38, 53–56]. In addition to thin film deposition applications, the

CN Violet system is also used extensively in astronomy, as it is a useful probe of

C and N abundances and isotope ratios [57–59]. CN spectroscopy was also used to

measure the temperature of the cosmic background [60,61]. Due to its wide use, the

spectroscopic data has been well studied. The B2Σ+ electronic state lies 25,752.6

cm−1 above the X2Σ+ ground state [52], as its energy level diagram shows in Figure

6. Once again, the upper state has a lower equilibrium internuclear distance as shown

in Table 3, so band heading in the P branch is expected for the sequences of interest.

Transitions between energy levels occur with the selection rules previously stated.
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Figure 6. Potential energy surfaces for the X2Σ+ and B2Σ+ electronic states of CN.
The v = 0− 2 vibrational levels are shown for each state. (Adapted from [62])

Spontaneous emission of a photon can occur from a molecule in an excited state

resulting in an emitted photon with an energy equal to the energy level spacing. The

rate constant for this process is the Einstein A coefficient. It can be calculated using

the equation in SI units [32]

AJ ′J ′′ =
16π3v3

3ε0hc3

SJ ′J ′′

(2J ′ + 1)
(12)

where SJ ′J ′′ ≡
∑

M ′,M ′′ | 〈J ′M ′| µ̂ |J ′′M ′′〉 |2 is the line strength as defined in [63].

However, it can be approximately factored into the vibrational, electronic, and rota-

tional components with

SJ ′J ′′ = qv′−v′′ |Re|2S∆J
J ′′ (13)

where qv′−v′′ is the Franck-Condon factor, Re is the electronic transition dipole, and

S∆J
J ′′ is the Hönl-London factor [32]. Using the Einstein A coefficient, the spectral
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irradiance from emission can be calculated,

Iλdλ =
hcAijnil

λij3
dλ (14)

where h is Planck’s constant, c is the speed of light, Aij is the Einstein A coefficient,

ni is the species concentration in the upper state i, l is the optical path, and λij is the

wavelength of the transition. All of these principles underly the actual experiment as

well as the simulation that was used to process the data after the experiment.
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III. Experiment and Methodology

3.1 Pulsed Laser Ablation of Graphite

The overall experimental setup is shown in Figure 7. The purpose of the experi-

ment was to gather temporally resolved spectra and imagery of the carbon plume that

resulted from the pulsed laser ablation of a graphite target. In addition to gathering

temporally resolved data, different background gases were used. Air, argon, nitrogen,

and helium were all used to understand the effects of background gas on the plume

dynamics. Pulsed laser ablation of graphite was accomplished using a Lambda Physik

LPX 305 KrF laser at λ = 248 nm operating at 1 Hz. The laser delivered an average

170 mJ/pulse onto a rectangular spot size of 8 x 1 mm as shown in Figure 8. The

laser pulse had a FWHM of 25 ns [24]. With these parameters, the laser delivered

an irradiance of 151 MW/cm2 to the target each pulse. After being reflected off a

Figure 7. Diagram of the overall experimental setup. The ICCD camera is looking
down along the y-axis toward the target with a 5.24 x 5.24 cm (0.102 mm per pixel)
field of view (FOV). The spectrometer is coupled with a optical fiber for a viewing
geometry down the x-axis with a spot size at the target of 1.1 mm. The laser is coming
in at an angle so that it is incident on the target at a 45◦ angle.
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Figure 8. The laser spot size of the Lambda Physik LPX 305 KrF laser (λ = 248 nm)
operating at 1 Hz. The spot size is appoximately 8 mm x 1 mm.

mirror with 99.9% reflection at 248 nm, the laser is focused onto the target inside the

10” vacuum chamber at a 45◦ angle using a 300 mm focal length plano-convex fused

silica 2” lens as shown in Figure 9.

Figure 9. Diagram of the overall experimental setup. The ICCD camera is looking
down along the y-axis toward the target with a 5.24 x 5.24 cm (0.102 mm per pixel)
field of view (FOV). The spectrometer is coupled with a optical fiber for a viewing
geometry down the x-axis with a spot size at the target of 1.1 mm. The laser is coming
in at an angle so that it is incident on the target at a 45◦ angle. The plume will
propagate in the direction normal to the surface target.

18



www.manaraa.com

The vacuum chamger was evacuated using a Pfeiffer turbomolecular pump/Varian

DS 102 mechanical pump combination resulting in a base pressure of approximately

10−6 Torr, which was measured by a Varian K7360 Type 5721 ionization gauge. After

being evacuated for at least 12 hours, the chamber was backfilled and maintained at

the desired pressure of background gas (Air, Ar, He, or N2) at either 1 or 10 Torr

using an MKS Baratron gauge and downstream MKS butterfly valve controlled by a

MKS 600 series pressure controller.

Figure 10. The target carousel with ablated sample and spatial calibration target are
shown. The target carousel holds up to 6 samples at a time. During the experiment,
the sample rotates at 10 rpm to randomize the laser spot location on the target, which
decreases localized cratering.

The targets were 1” diameter by 0.25” thick pyrolytic graphite (99.999% C) from

Kurt J. Lesker. A carousel that could hold six targets was used as shown in Figure 10.

During testing, each target was rotated along the z-axis at 10 rpm to avoid excessive

cratering. A reference target was also initially placed in the carousel to determine

the viewing geometry of the spectrometer, which can also be seen in Figure 10. It
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had a 25.4 mm x 6.2 mm x 1mm stainless steel spatial grid welded to the front of a

1” diameter by 0.25” thick stainless steel disk.
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Figure 11. (a) The Instrument line shape of the McPherson 209 1.33 m spectrometer
obtained from the 404.656 nm line of Hg. It is a Voigt profile with a FWHM of 0.0203
nm. (b) The instrument line shape of the 753.57 nm line of Ne. It is a Voigt profile
with a FWHM of 0.0783 nm.

A McPherson 209 1.33 m spectrometer equipped with a Princeton Instruments

PIMAX4 1024 x 1024 intensified charged coupled deviced (ICCD) array was used

to capture the visible emission spectra of the plumes. A fiber bundle (NA of 0.22)

was coupled to the spectrometer, and two 2” biconvex fused silica lenses were used as

collection objects. The closest to the chamber was a 300 mm focal length lenss, which

was followed by a 100 mm focal length lens located 3 cm from the 300 mm lens. The

spectrometer had a slit width of 40 µm and blazed grating with 1800 groves/mm was

used. With this setup, a spectral resolution of δλ = 0.0203 nm was obtained on the

blue side. The instrument line shape has a Voigt profile as shown in Figure 11. The
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specific components of the profile at 400 nm are a Gaussian with a FWHM of 0.0172

nm, and a Lorentzian with a FWHM of 0.0099 nm. On the red end of the spectrum,

the Voigt profile had a FWHM of 0.00803 nm (Gaussian FWHM of 0.0062 nm and

Lorentzian FWHM of 0.0052 nm).
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Figure 12. Detectivity as a function of wavelength is displayed for a gate width of 250
ns. The detectivity drops off rapidly with wavelength outside the middle of the visible
spectrum.

The spectrometer had a spectral viewing window of 2-4 nm (depending on grating

angle) throughout the visible spectrum, so the grating was manually turned in be-

tween shots to collect spectra at various wavelengths. At each wavelength, the camera

was gated with delay times from 1-10 µs and gate widths of 100-1000 ns to develop

temporally resolved spectra. The shots suffered from < 5% pulse-to-pulse laser flicker

and ≤ 10 ns pulse-to-pulse timing jitter. The collection of various gated shots at a

specific wavelength happened over approximately 100 shots. The spectrometer was

spectrally calibrated each day using Hg and Ne lamps. Radiometric calibrations were

accomplished using a NIST certified tungsten (W) filament. The plume spectra were

capture with varying gate widths, so the radiometric calibration also incorporated
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multiple gate widths to ensure the detectivity was properly characterized. The de-

tectivity is shown in Figure 12. The window and lens transmission over the visible

spectrum was calculated to be 0.77. A spatial resolution of 1.1 mm was determined

by shining a lamp through the back of the fiber onto the focus aid in the vacuum

chamber as shown in Figure 13.

Figure 13. Viewing from the x-axis, the red dot is from a light shining through the
back of the fiber onto the focus aid. A spot size of 1.1 mm was determined using the
grid on the focus aid as shown.

Visible imagery was also collected with a Princeton Instruments PIMAX I 512 x

512 Gen III ICCD with a Nikon AF Nikkor 60 mm micro f/2.8 lens. The system had a

field of view (FOV) of 5.24 x 5.24 cm (102 µm per pixel). Per previous characterization

[24], the PIMAX Gen III quantum efficiency had a maximum of 40% at 700 nm and

was above 20% from 410-890 nm. The camera was gated with nonlinearly varying

gate delays and gate widths of 1.5-11.5 µs and 2-200 ns, respectively. A ST-133

controller externally triggered by the laser electronics contolled the gating. Using the

focus aid, a point spread function (PSF) of 0.5 mm (5 pixels) was calculated.

Band pass filters were used to isolate various emissions from neutral and ionized

species, which will help to correlate the spectra and the imagery data. The various

filter information is shown in Table 4. They were specifically chosen to correspond to

CN, C2, Ar, and C I lines. Combing the imagery and the optical emissions spectra will

aid in developing an understanding of the plume dynamics. To gain an understanding
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of the spectra, simulations need to be conducted in order to compare to the ones

observed experimentally.

Table 4. The bandwidth and center wavelengths for each filter used in the imagery is
shown here. Possible species of interest that correspond to those wavelengths are also
shown.

Center Wavelength (nm) Bandwidth (nm) Species of Interest

374 10.8 Possibly CN Violet
393 8.9 CN Violet (0,0) Band head
521.49 9.22 C2 Swan (0,0)
761 10 Ar I
830.63 9.65 C I

3.2 PGOPHER Simulation

To aid in understanding the plume dynamics of the PLA of graphite, simulations

were conducted using the spectra obtained from the experiment to extract rovibra-

tional temperatures. Two models were developed for the simulations: one for the

C2 Swan band and one for the CN Violet. The simulations were accomplished using

PGOPHER, which is a program developed by Dr. Colin Western from the University

of Bristol to simulate rotational, vibrational, and electronic spectra. It is a multi

purpose tool for the simulation and fitting of molecular spectra [64]. PGOPHER was

chosen for its ability to handle a large number of transitions and interactions. It also

had previously been used in simulating C2 and CN spectra [40, 52]. Each model is

broken down into a tree structure as shown in Figure 14.

The mixture contains top level settings for the calculations such as units. The sim-

ulation contains objects which describe the experimental conditions such as tempera-

tures and linewidths. When both a Gaussian and Lorentzian linewidth are specified,

a Voigt convolution is performed. The species contain the molecules object, which
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Figure 14. An overview of the structure of a PGOPHER model is shown.

specify the type of molecule (linear in this case) and other things such as symmetry.

The manifolds are groups of states, such as a specfic electronic state. The state object

contains the band origin and rotational constants for a particular state. Perturba-

tions (not shown in figure) can also be added to the manifolds object. Also under

the molecules object is the transition moments object which describes the transitions

between or within the various manifolds. It contains various transition moments for

each state to state transition depending on the type. For the models used in this

experiment, only spherical (electric dipole moment) transitions were used.

The C2 Swan (d3Πg – a3Πu) model was designed with the v = 0− 10 vibrational

states for the d3Πg electronic state and the v = 0 − 9 vibrational states for the

a3Πu electronic state using the available spectroscopic constants [51]. The constants

that were used in the model are shown in Table 9 in Appendix A. No perturbations

were included in this simulation. The transition dipole moments were obtained from

another previously reported experiment [40]. For reference, the Einstein A coefficients

are shown in Table 10. The transition moments were calculated from the Einstein A

coefficients. The radiative lifetimes from these are approximately 100 ns. Although

the model simulates the whole system, the portion used to estimate the temperatures

is the 0 − 0 band and part of the 1 − 1 band in the ∆v = 0 sequence. This portion
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Figure 15. The Fortrat diagram along with the spectra for the C2 Swan simulation is
shown. The Fortrat diagram markers are scaled based on intensity. The P, Q, and R
branches of 0− 0 band are visible as well as the P branch of the 1− 1 band.

with its associated Fortrat diagram is shown in Figure 15.

The CN Violet (B2Σ+ – X2Σ+) model used the v = 0−15 vibrational states for the

B2Σ+ electronic state and the v = 0 − 15 vibrational states for the X2Σ+ electronic

state [52]. The spectroscopic constants for these states are shown in Table 11 in

Appendix A. The associated Einstein A coefficients used to calculate the transition

moments are shown in Table 12 in Appendix A for reference. These produce radiative

lifetimes of approximately 60 ns [52]. The portion used to estimate the temperatures

is mainly the 0− 0 band, the 1− 1 band, the 2− 2 band; however, the 3− 3 band up
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to the 10−10 band add small contributions as shown in Fortrat portion of Figure 16.

Figure 16. The Fortrat diagram along with the spectra for the CN Violet simulation
is shown. The Fortrat diagram markers are scaled based on intensity.

To extract rotational and vibrational temperatures from the experimental data,

a fitting routine was developed using the models described above. The experimental

data was collected in various tests. A single test is a collection of frames that were

collected under the same experimental conditions (i.e. background gas and pressure).

The different frames within a test then had different gate delays in order to temporally

resolve the plume propagation after the laser irradiation occurred. Thus, by fitting

each frame, a rotational and vibrational temperature was extracted at each time step
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for a given test. An overview of the process for fitting a test comprised of many

frames is shown in the block diagram in Figure 17.

Figure 17. An overview of the fitting routine for an individual test is shown in this
block diagram. The fit parameters are extracted at each frame of the test in order to
give temporally resolved temperatures.

A function was written in Matlab to change various parameters of the simulation

in order to fit the simulation to the experimental data using the nonlinear fitting tools

native to MATLAB. The function floated the following parameters in the simulation:

Gaussian line shape (FWHM), Lorentzian line shape (FWHM), rotational temper-

ature, vibrational temperature, vertical scale factor, and a constant vertical offset.

These parameters were simultaneously fit using a nonlinear contour fitting process;

however, there were a few calibration steps prior to the actual fitting. Although a

spectral calibration was performed each day during testing, the spectral axis was

found to be slightly off for each test, so it was then fine tuned using the simulated

spectra to improve the calibration. Once this was done, the actual fitting process

could occur.

Recall from Section 2.3 that Equation 14 described how the spectral irradiance

can be calculated. If we assume that the rotational and vibrational temperatures are

not in equilibrium, then the upper state column density can be calculated using

nil =
n′l

Q
(2J ′ + 1)e

−F (J′)
kTR e

−G(v′)
kTv (15)

where n′ is the total population of the d3Πg (upper) state, l is the optical path length,

J ′ is the upper state total angular momentum quantum number, Q is the partition
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(a) (b)

Figure 18. C2 Swan simulated spectra. (a)The effect of the rotational temperature on
the simulated spectra is shown. (b) The effect of the vibrational temperature on the
simulated spectra is shown.

function, F (J ′) is the the upper state rotational energy, G(v′) is the upper state

vibrational energy, k is the boltzmann constant, TR is the rotational temperature,

and Tv is the vibrational temperature. This means that changing the rotational and

vibrational temperatures affects the relative populations of the rovibrational energy

levels.

Understanding exactly how the temperatures affect the populations in the rota-

tional and vibrational levels for each molecule is best done visually. Figure 18 displays

how a change in the rotational temperature or the vibrational temperature affects the

spectral region that will be fit. The plots were normalized to the peak intensity of the

band head to emphasize the changes in the relative populations, which is what the

temperatures are truly changing. The rotational temperature changes the spectrum

a lot since a large portion of the (0,0) band is visible; whereas, the vibrational tem-

perature only affects a small portion because only part of the P branch of the (1,1)

band is visible.

Figure 19 displays similar information but for the CN Violet spectrum. This

portion of the spectrum encompasses a larger amount of vibrational bands; however,

the spectrum is less sensitive to changes in the rotational and vibrational temperatures
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(a) (b)

Figure 19. CN Violet simulated spectra. (a)The effect of the rotational temperature
on the simulated spectra is shown. (b) The effect of the vibrational temperature on
the simulated spectra is shown.

due to the spacing. Because of this, we can expect the error bounds for the CN Violet

temperatures to be larger than the ones for the C2 Swan.

Regardless of these differences, the fit process was the same for both the C2 Swan

and CN Violet regions of the spectra. Once the wavelength axis is finished being

calibrated for a particular test, each frame starts with a non-gradient based minima

search to give a better chance of finding the global minimum and then moves into

a gradient based approach to fine tune the floated parameters. The parameters are

bounded during these processes. An initial bound for each variable was developed

based on its reasonableness in the simulation compared to the experimental data.

These bounds for each simulation are shown in Table 5.

The fit bounds were initially a lot broader to ensure the model was not overly

constrained; however, after a few tests from various time steps across the different

background gases, they were tightened using the early results to improve run times.

The various bounds are different because the initial testing led to those bounds being

created. Widening the bounds naturally increases the run time drastically due to the

initial non-gradient based fitting. Overall, 53 tests (∼ 2000 frames) were fit using the
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Table 5. Fit parameter bounds for both C2 and CN fitting routines.

C2 CN

Fit Parameters Lower Upper Lower Upper

Gaussian FWHM (nm) 0.008 .02 0.001 0.02
Lorentzian FWHM (nm) 0.008 .02 0.001 0.03
Rotational Temperature, TR (K) 1500 10000 3000 8000
Vibrational Temperature, Tv (K) 1500 10000 5000 15000
Scale Factor (arb) 0.1 12 0.1 8
Offset (arb) ±15% of frame baseline

C2 model, and 12 tests (∼ 500 frames) were fit using the CN model. The results from

these simulations will be presented in the following section.
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IV. Results and Analysis

4.1 Plume Imagery

Before the simulations are discussed, it is helpful to first glance at the plume im-

agery to orient the reader with what the plume looks like and how it is propagating

through the background medium, which is key to understanding the dynamics of the

plumes during the nanosecond pulsed laser ablation of graphite. Overall, approxi-

mately 7,000 images were captured under the various test conditions, so this section

will only display a small portion of those. The imagery complimented the spectra

well, as it was able to capture events on time scales that were just not possible with

the spectrometer.

Figure 20 shows the broadband (no filter) plume imagery for six different time

delays. The tests were conducted in an argon background. It is important to note

the timing of each plot. The plume comes off extremely bullet like initially as shown

in the first three images. The shock front slows down very fast, and the plume begins

to expand outward on the sides. After about 1 microsecond, the front of the plume

does not progress farther forward. This also highlights the inital spatial averaging

that occurs with the spectrometer. Figure 20(c)-(d) show the initial shock front

traversing through the FOV of the spectrometer during its early collection times.

With a spectrometer gate width of 250 ns or 500 ns depending on what molecule is

being looked at, there is a significant amount of averaging that occurs in the first two

time steps; however, as is shown in the later time steps of the imagery, there is much

less plume movement.

The background gas significantly affects the propagation of the plume. Particu-

larly, the helium background gas varies significantly. Figure 21 shows snapshots of the

plume imagery at the same time steps but in a helium background gas. Comparing
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Figure 20. Various images are plotted from the experiment conducted in 10 torr of
argon. The highlighted red area is the estimated location of the spectrometer view
across the x-axis.

these to Figure 20 highlights how different the plume propagation truly is. There

are a few interesting features. First, the initial velocity is higher, as the plume has
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Figure 21. Various images are plotted from the experiment conducted in 10 torr of
helium. The highlighted red area is the estimated location of the spectrometer view
across the x-axis.

traveled mucher farther in helium at time t = 300 ns when compared to the argon

background imagery. The second thing to note is the plume propagates out much
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farther, which will become even more apparent when looking at the shock front prop-

agation in Section 4.2. The last thing to note is in Figure 21(d)-(f). It appears as

though part of the plume reverses direction and comes back toward the target. This

odd phenomena will be further documented in Appendix C.

Viewing the imagery is a qualitative way to begin to understand the dynamics of

the plume after the laser ablates the graphite target. However, analyzing the shock

front propagation provides a more quantitative discussion of the plume dynamics.

4.2 Shock Front Analysis

This section will detail the analysis of the shock fronts for the various tests in both

the filtered and unfiltered imagery. The theoretical foundation for this was discussed

in Section 2.2. It is useful to go through an example of the full process in order to

understand exactly how the data is extracted prior to fitting the various models.

To find the shock front, centerline intensities are taken along the image to find

the 50% max of the shock front, similar to that which is discussed in [28]. Figure 22

shows an example of finding the shock front location for two different time steps. At

each time step, the centerline intensities are taken for each image. This is shown in

Figure 22(a)-(b) for two separate times. Once the centerline intensity is taken from

the imagery, the 50% max of the intensity is taken to be the actual location of the

shock front. Figure 22(c)-(d) shows the location of the shock front as represented by

the blue circle in each plot. Once this is done for each time step where the shock

front is clearly visible, we then have the shock front location, R(t). The shock front

location calculated from the no filter imagery for each of the background gases is

shown in Figure 23.

It is clear from Figure 23 that the plume propagation is different in the helium

background gas when compared to the other three background gases. It is important
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Figure 22. Two separate time steps are plotted to show how the shock front is actually
tracked. (a)-(b) Two images at different times are plotted. The highlighted area in red
is the centerline intensity for each given frame. (c)-(d) These are the 1-D centerline
intensity plots gathered from the two plume images. the 50% max of the centerline
intensity is highlighted by the blue circle. This is what is deemed as the actual shock
front location.

Table 6. The reduced mass of C2 and the various background gases used in the experi-
ment are displayed in atomic mass units. The reduced mass with helium is drastically
different than the others.

Background Gas Reduced mass, µ (amu)

Air 13.1
Ar 15
N2 12.9
He 3.43
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Figure 23. The shock front location (calculated from the broadband imagery) in each
background gas is plotted as a function of time.

to note that the reduced mass of C2 and He is much different than the rest of the

background gases as shown in Table 6. It appears from the imagery, the carbon

plume is just plowing through the helium background in comparison to the other

three background gases. This will become important later because the spectrometer

was not moved during any of the experiments, so the FOV is looking at a much

different portion of the plume during the experiments with a helium background as

opposed to the experiments with air, argon, and nitrogen backgrounds.

With the shock front location properly characterized, various shock propagation

models can be used to examine the data. Recall from Section 2.2, two models, the

Taylor-Sedov model and the drag model, were described. These are the two models

that will be used to fit the data, and the estimation of the free expansion velocity

from the drag model will also be shown. An example fit from the shock location

in the experiment with a 10 Torr air background is shown in Figure 24. The drag
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Figure 24. The experimental shock front from imagery data with no filter in 10 Torr
Air. The intial velocity was v0 = 1.39 ± 0.05 cm/µs, and a stopping distance of Rs =
0.506 cm for the drag model. The Taylor-Sedov model had n = 1.69, which suggests it
is somewhere between a spherical wave and a cylindrical wave

model does particularly well in describing the shock front propagation, and this trend

was common throughout all of the data. The intial velocity for the drag model was

v0 = 1.39 ± 0.05 cm/µs, and a stopping distance of Rs = 0.506 cm. Interestingly,

the value of n for the Taylor-Sedov model was found to be 1.69, which means it is

somewhere between a plane wave and a cylindrical wave. This makes sense given

the elongated rectangular nature of the laser spot size. It should be noted there is

a degree of difficulty in fitting the Taylor-Sedov model because correctly calculating

where the model is valid becomes difficult. Equation 6 from Section 2.2 defines the

limits; however, the lower limit is difficult to estimate due to not knowing the actual

ablated mass.

To compare each of the background gases, their shock front model parameters are

all displayed in Table 7. Some of the expected trends were the larger stopping distance
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Table 7. The Taylor-Sedov model and drag model parameters are displayed for all of
the no filter imagery.

Taylor-Sedov Model Drag Model

n ξ
(
E
ρb

)1/(n+2)

Rs (cm) v0 (cm/µs)

Air 1.69± 0.26 0.012± 0.003 0.506± 0.008 1.39± 0.05
Ar 1.99± 0.25 0.015± 0.003 0.614± 0.012 1.03± 0.06
He 1.41± 0.12 0.016± 0.002 1.161± 0.019 1.80± 0.06
N2 1.88± 0.21 0.016± 0.003 0.514± 0.009 1.47± 0.23
N2 (1 Torr) 1.71± 0.18 0.024± 0.005 1.585± 0.033 1.82± 0.08

for a helium background as well as for the lower pressure nitrogen background. The

error analysis for the various parameters is detailed in Appendix B. Another way to

view Figure 24 is to take the derivatives of the experimental values as well as the

models to obtain the velocities. These can be converted to Mach number by using

the speed of sound in each background gas, which is displayed in Table 8. This stark

Table 8. The various sound speeds are displayed along with the average initial mach
number for each background gas

Parameter Air Ar He N2 N2 (1 Torr)

Speed of Sound (cm/s ×104) 3.47 3.22 10.2 3.85 —
Average Initial Mach Number 40 41 19 39 57

contrast in Mach number between helium and the rest of the background gases further

shows how different the dynamics between the two groups must be.

Using various filtered imagery helps to visualize where the different particles are

located in the shock. Figure 25 plots the various filtered shock front locations found

using the different types of filtered imagery in an argon background. The curves are

each labeled based on what emission species was visible in that wavelength range. The

C2 is the first to drop off of the shock, while the atomic carbon and argon continue to
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Figure 25. The splitting of the various shock fronts based on species is shown in an
argon background gas. The argon is continually excited as it is plowed forward by the
inital plume.

propagate. The atomic argon continues to stay connected to the shock as the plume

is plowing into the background gas. Now that the imagery has been characterized,

we can begin to look at the various spectra that were collected.

4.3 Visible Spectra

A collection was taken to capture the full visible spectrum to see exactly what

molecular and atomic structure was visible during the pulsed ablation. It was collected

in a 1 Torr N2 background with a 1.7 µs time delay, so no ionized species are expected

to be seen this late. The spectrum is shown in Figure 26. The gaps that occur towards

the red end of the spectrum are from missing wavelengths due to improperly moving

the spectrometer during the experiment. Due to the very high resolution, only about

4 nm of the spectrum can be captured at once; however, the spectrometer grating

was moved too far in between each shot, so parts of the spectrum are missing. The
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C2 Swan band and the CN Violet are well resolved. The ∆v = −2,−1, 0,+1,+2

sequences of the C2 Swan bands are all visible as well as the ∆v = 0,+1 sequences

of the CN Violet. Data collection focused mainly around the ∆v = 0 sequences for

Figure 26. The full visible spectra is shown for 151 MW/cm2 irradiation of graphite.

both the C2 Swan and the CN Violet, and these were the areas that were used to

compare against the spectral simulations.

4.4 Spectral Fits and Errors

The overall fitting process was previously described in Section 3.2; however, it is

important to show and discuss a few example fits spanning the different background

gases, time steps, and molecules in order to have an understanding of the error.

There were many different sources of error involved in the fitting process, and each

had varying degrees of importance. This section is going to look at those various

sources as well as how they were mitigated.

40



www.manaraa.com

1

2

3

4

5

6

7

In
te

n
si

ty
(A

rb
.)

Experiment Simulation

512.5 513 513.5 514 514.5 515 515.5 516 516.5 517

−1

0

1

Wavelength (nm)

R
es

id
u
al

s

Figure 27. An example fitted C2 Swan spectrum is shown here. It was taken t=0.34
µs after the laser irradiation, and the background gas was 10 Torr of Argon. The
circled portion shows a common discrepency seen throughout all of the spectra, which
corresponds to P1(49), P2(48), and P3(47) lines of the (0, 0) band.

Figure 27 shows a typical fit for the optical emission spectrum of the C2 Swan (0,0)

band and (1,1) band. Recall from Fortrat diagram in Figure 15 that only a part of

the P branch of the (1,1) band is within the frame for the spectral fits. At 512.9 nm,

the lines corresponding all three fine-structure components of N = 47 level (P1(49),

P2(48), and P3(47)) of the (0,0) band are not present in any of the experimental
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data. This is most likely due to perturbations of the d 3Πg state with the b 3Σ−g

state [51]. Previous work suggests the N = 47 level of the b 3Σ−g is the perturbing

state [65]. Although the perturbations were not added to the model, this small region

of the spectra was excluded during the actual fitting procedures to ensure it would not

influence the temperatures. It was also noted that the band heading was frequently

lower in the experiment than in the simulation in early time steps. This was likely

due to self-absorption in the plume, which was also seen in the first microsecond

by Vivien et al [54]. The absorption effects are clearly strongest in the band head.

This will affect the temperatures due to changing the relative intensities of the lines;

however, the self-absorption does not last very long, so the assumption of an optically

thin plume holds for the majority of the data.

Figure 28 shows multiple spectral fits at various time steps in the different back-

ground gases tested. It is easy to see the self-absorption is only an issue early on

when comparing Figure 28(a) to the others. The previously discussed perturbation is

also visible in each spectra as well. Towards 10 µs, the SNR becomes poor as visible

in Figure 28(d). The spectrum is still barely visible, so the results from those fits

will be included as well; however, as will be shown in the following sections, the error

bars get increasingly large in the 7–10 µs range because of the poor SNR.

An example fit for the CN Violet spectrum is shown in Figure 29 with simulation

temperatures of TR = 5, 170±680 K and Tv = 10, 040±1320 K. Recall, the main bands

are the (0,0), the (1,1), the (2,2), and the (3,3); however, as stated shown previously

in Figure 16, partial bands up to the (10,10) band for the ∆v = 0 sequence are visible

in this spectral range. It is clear the residuals are higher compared to the C2 Swan

simulations; however, it should be noted that the rotational spacing of lines for the CN

Violet spectra are much lower, and the sensitivity to the rotational and vibrational

temperatures is lower as well. With these two issues combined, it becomes much more
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Figure 28. Various C2 Swan spectral fits and residuals. (a) Spectral fit at t = 0.51 µs in
10 Torr Ar. (b) Spectral fit at t = 3.85 µs in 10 Torr He. (c) Spectral fit at t = 7.18 µs
in 10 Torr Air. (d) Spectral fit at t = 10 µs in 10 Torr N2.

difficult to fit compared to the C2 swan with the obtained spectral resolution from

the experiment. Another potential issue is the longer gate width. With the radiative

lifetimes of the excited states, there is a large degree of temporal averaging over the

500 ns gate width, which makes fitting for temperatures more complicated as well.

All of these factors also resulted in the run time for fitting being quadrupled.

Similar to the C2 Swan spectral fits, it is useful to look at a wide variety of the

fits across both the different background gases as well as different time steps. Figure

30 displays four different spectral fits. Once again, the simulations overestimate the
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Figure 29. An example CN Violet fitted spectrum is shown here. It was taken t=0.77µs
after the laser irradiation, and the background gas was 10 Torr of N2. The simulation
temperatures are TR = 5170± 680 K and Tv = 10, 040± 1320 K. The fits are more difficult
due to the density of lines being much higher compared to the C2 Swan.

band heads in the early time steps, which provides more evidence for the possible

issue of self-absorption. This error is much lower for the CN Violet compared to the

C2, which is clear when comparing the two fits visually. However, it is still a source

of systematic error early on in the fits. Overall, the fits display random error besides

the discussed band head issues. It is also clear that the SNR ratio is much better

than the C2 Swan at 10 µs as shown by comparing Figure 30(d) with Figure 28(d).

One way to see how well the model fits to the experimental data is to look at the

mean square error (MSE) of the fits.
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Figure 30. Various CN Violet spectral fits and residuals. (a) Spectral fit at t = 0.51 µs
in 10 Torr N2. (b) Spectral fit at t = 3.85 µs in 10 Torr N2. (c) Spectral fit at t = 5.9 µs
in 10 Torr Air. (d) Spectral fit at t = 10 µs in 10 Torr Air.

Figure 31 displays the MSE for each molecule in the various background gases.

The MSE is scaled by the intensity to allow it to be compared across each time step.

This was accomplished by dividing by the scale factor of each fit in order to account

for the fact that the signal is brighter towards the beginning of the time sequence.

Interestingly, the C2 MSE displays this “U-shaped” like curve, while the CN MSE is

relatively constant throughout the whole range. The shape of the C2 MSE displays

the effect of two of the larger errors that occurred during the fitting process: the

self-absorption that drove more error in the initial fits and the low SNR that added
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Figure 31. The mean square error for (a)C2 Swan and (b)CN Violet spectral fits are
displayed for t = 0− 10 µs in each background gas.

error towards the later time steps. As we saw in Figure 30, the errors in the band

heads of the CN spectral fits were much smaller compared to the initial band head

error in the C2 spectral fits, and the SNR was much better for the CN at time t = 10

µs. In addition to these types of fit errors, the experimental spectra can be skewed

by random error in the data collection itself, which also merits discussion.

All of the test conditions (i.e. background gas/pressure) were collected multiple

times. This enables us to look at the shot to shot variability and the random error in

data collection. One of the large assumptions for the collection of the data was that

each shot was essentially the same. For each test condition, three shots were collected

at each time step. Figure 32 displays rotational and vibrational temperatures of both

molecules for various backgound gases. There are only a few instances of outliers such

as the first time step in Figure 32(b). Overall, the three tests constantly coincide with

one another, which shows the shot to shot repeatability is good. It is important to

once again note that although there are only three colors for visual purposes, each

data point itself is from a single shot. Only one data point was collected per laser

pulse, which gives even more merit to the consistency of the plots show in each part

of Figure 32.
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Figure 32. Various sets of tests are displayed to show the shot to shot variability in
the extracted temperatures. (a) The C2 rotational temperatures for 3 tests in an Ar
background. (b) The C2 vibrational temperatures for 3 tests in a He background.
(c) The CN rotational temperatures for 3 tests in an N2 background. (d) The CN
vibrational temperatures for 3 tests in an Air background.

This naturally leads into the discussion of the error that will be displayed in the

final plume temperature plots (Section 4.5). The error displayed in Figure 32 is the

95% confidence bound from the fitting routine, which provides a good estimation of

how well the temperatures in the simulation fit the given experimental data; however,

it does not naturally account for the experimental error from the actual data collection

at all. This error from the fitting process is denoted σfit. There is a σfit associated

with each single spectrum that was fit, so the average of the three single fit errors for

a given time step is taken and called σfit. However, since each collection was taken

three times, the error between the three spectra at a single time step does give rise

to an estimation of the experimental error (i.e. the standard deviation between the
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three temperatures at a single time step). This error is denoted σtest. In the final

rotational and vibrational temperatures, we assume that these two types of error are

independent of each other and can therefore be added in quadrature. This accounts

for the confidence in the fit parameters themselves, but it also accounts for the error

in the assumption that every shot is the same. Combing these two errors yields an

equation for the error in temperature,

δTi =
√

(σfit)2 + (σtest)2 (16)

where Ti is either the rotational temperature, TR, or the vibrational temperature, Tv.
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Figure 33. The rotational temperatures, TR, for the C2 Swan fits are shown for the
background gas of 10 torr of Ar. The two lines are for the two gate widths used with
the spectrometer. The gate width was shown to not affect the simulation temperatures.

Another potential source of error was the gate width. For the C2 Swan spectra,

the gate width for each collection was 250 ns, and for the CN Violet spectra, the gate

width for each collection was 500 ns unless otherwise stated. The background gases
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were air and N2 This ensured enough light passed through the fiber to gather good

spectra. This ensured enough light passed through the fiber to gather good spectra.

The gate width could affect the simulation results because of temporal averaging, so

a comparison was done between two gate widths. The background gas was argon

at 10 torr for both collections, and 100 ns and 250 ns gate widths were used to

compare the effects. The gate width was found to not have an immediate effect on

the temperatures extracted from the simulations. The rotational temperatures for the

two different gate widths along with their intensities are shown in Figure 33. Data

for each time step was collected three times for each gate width, so the lines shown

are the average of each set of three. As you can see, the error bars begin to increase

towards the end of the time series (7-10 µs) due to the lack of signal in the 100 ns

gate width. Besides this effect, the temperatures are the same. The gate width was

not investigated for the CN Violet; however, similar results would be expected. With

the errors and fitting process investigated, the actual temperature results can now be

discussed.

4.5 Molecular Temperatures

Investigating the rovibrational temperatures of the C2 Swan (0,0) band and the CN

Violet ∆v = 0 sequence was one of the main goals for this research. The temperatures

coupled with the previously described plume imagery can provide key insights into

the plume dynamics after the laser irradiation of graphite. Now that the fitting

process and error has been detailed, the actually resulting plume temperatures for

each molecule can be fully discussed.

The C2 Swan rotational temperatures, TR, for the various background gases (Air,

Ar N2, and He) are shown in Figure 34, and the vibrational temperatures, Tv, are

shown in Figure 35. The temporal evolution of the rotational temperatures for each
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Figure 34. The rotational temperatures from the C2 Swan simulations are displayed for
each background gas. The rotational temperatures are all the same within the error
and have a decreasing linear trend. The trend of the intensity is drastically different
for the experiments with helium as the background gas.

background gas is essentially the same. The rotational temperatures themselves ap-

pear to be fairly consistent with Park et al [53] and Saito et al [66], as they too

decrease in approximately the same temperature range. The rotational temperatures

of C2 that were calculated in this study are essentially linearly decreasing with time.

The fact that the background gas does not affect the rotational temperatures whatso-

ever is interesting, and this is inconsistent with the rotational temperatures calculated

from Park et al [53].
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Figure 35. The vibrational temperatures from the C2 Swan simulations are displayed
for each background gas. The vibrational temperatures are all the same with the
exception of the helium background gas. The trend is less linearly especially in the
earlier times.

The intensity profile of the C2 Swan in a helium background appears drastically

different than the rest of the background gases. Recall from Section 4.1 and 4.2 that

the plume propagation in helium is much different than the rest of the background

gases. The peak intensity temporal location for Ar and N2 is consistent with Park

et al [53] who found the peak of both to occur at time t = 1 µs. In their work

though, the shape of the helium intensity looked similar to the other background

gases; whereas, Figure 34 suggests it is drastically different. This suggests that the
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spectra are possibly dependent upon location relative to the shock front.

The vibrational temperatures are all the same except for in a helium background

gas. The trend is more nonlinear for the vibrational temperatures as well. The vibra-

tional temperatures are much lower than those found by Harilal et al [37]; however,

the pressure used in their experiment was much lower at 50 mTorr. Ikegami et al

found vibrational temperatures slightly higher as well with their temperatures only

ranging from 8,000 K down to 5,000 K, and they reported that in an N2 background

(600 Torr), the vibrational temperatures were lower when compared to an argon

background (600 Torr) [5].
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Figure 36. The temperature ratio (Tv/TR) from the C2 Swan simulation temperatures
are displayed for each background gas. The ratio approaches approximately 0.78.

An interesting trend is uncovered when Tv/TR is plotted. As time progresses, this

ratio was expected to approach 1, as it approaches equilibrium; however, as shown

in Figure 36, it dips slightly below 1 and approaches a ratio of 0.78. The error bars

of the for Figure 36 are based on the standard uncertainty for a function of several
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variables [67] as described in Equation 17
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(17)

The fact that the rotational and vibrational temperatures are not in equilibrium

is particularly important for determining the mechanisms in which C2 is formed.

Nowhere has the phenomena with the He been seen previously.

4000

5000

6000

R
ot

at
io

n
al

T
em

p
er

at
u
re

,
T

R
(K

) Air N2

0 1 2 3 4 5 6 7 8 9 10
0

2

4

Time (µs)

In
te

n
si

ty
(A

rb
.)

Figure 37. The rotational temperatures from the CN Violet simulations are displayed
for the Air and N2 background gases. The rotational temperatures are higher in an N2

background.
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The rotational temperatures for the various CN Violet emission spectra are shown

in Figure 37. As expected from the discussion in Section 4.4, the error bars are much

worse in comparison to the C2 simulations. The rotational temperatures of CN barely

decrease during the time interval. The trendlines are the best fit for each background

gas using a simple linear regression in order to provide a visual, and both show a slight

decrease in temperature over time. In contrast to the C2 Swan, there is a difference

in temperatures between the background gases. Park et al found extremely different

rotational temperatures ranging from 18,000 K down to 8,000 K and were found to

steadily decrease over that range for similar pressures of N2 [53].

The overall shape of the intensity of the CN Violet emissions looks different from

previous studies as well [38, 47, 54]. Most intensity plots displayed in previous work

have a single peak similar to the C2 intensities shown previously. This could be due

to the time scale, as most other work only spans a few microseconds at most.

The vibrational temperatures are shown in Figure 38. The vibrational tempera-

tures are dramatically higher than the rotational temperatures in both background

gases. Both are also much more time dependent than the rotational temperatures,

but they do not vary as much as the temperatures found from CN simulations by

Vivien et al [54]. It should be noted that a previous study resulted in the exact

opposite, where the rotational temperatures were much higher than the vibrational

temperatures [53]. However, a different study by Thareja et al. showed similar vibra-

tional temperatures to the ones shown here [38]. The temperature ratio for the CN

Violet is shown in Figure 39.

The temperature ratio fluctuates between 2 and 2.2, while dropping between 1.8

and 2 later in the time series. While the temperatures were different between the

two different background gases, the ratios are indistinguishable. The fact that the

ratio is far from 1 suggests it is not in local thermodynamic equilibrium, which is
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Figure 38. The vibrational temperatures from the CN Violet simulations are displayed
for each background gas. The vibrational temperatures are much higher than the
rotational temperatures. The vibrational temperatures are higher in an N2 background.
Both are decreasing with time.

once again extremely important for the discussion of formation mechanisms. The C2

Swan temperature ratio is vastly different from the CN Violet ratio, although neither

temperature ratio approaches 1.

While the C2 Swan rovibrational temperatures did not depend on background gas

besides helium, the CN Violet temperatures were background gas dependent between

the air and nitrogen backgrounds. Figure 40 displays the intensity of the C2 Swan

emissions in comparison with the CN Violet emissions. The intensity is derived from

the scale factor used in the fitting process. The C2 emissions are much brighter than
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Figure 39. The temperature ratio (Tv/TR) from the CN Violet simulation temperatures
are displayed for both background gases. The ratio stays around 2 with a slight decrease
towards the end of the time interval.
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Figure 40. The intensities of both C2 and CN are plotted for both air and nitrogen
backgrounds. The C2 intensity is plotted on the y axis on the left and is blue. The CN
intensity is plotted on the y axis on the right and is orange.

the CN, so they are scaled differently. However, the trend is the interesting portion.

The rise in intensity of the CN directly coincides with the fall in the C2 intensity. This

suggests that C2 might play a role in the production of CN, which is consistent with

previous research [35,38]. Another interesting feature is shown in Figure 41. The ratio

of the two intensities which is proportional to their relative concentrations is plotted
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Figure 41. The intensity ratio of C2 and CN is plotted for various plume temperatures.
It is assumed that the rotational temperature of the C2 molecular is a good estimate
for the plume temperature. A strong temperature dependence between the two species
is shown.

against the plume temperature. It is assumed that the rotational temperature of the

C2 is a good estimate of the plume temperature. A strong temperature dependence

is shown, which has a similar shape compared to previous research [56].
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V. Conclusions

The overarching goal of this research was to begin to piece together a convincing

mechanism for the formation of C2 and CN during the pulsed ablation of graphite.

While it has been studied quite frequently in the past, there are largely inconsistent

theories on what is truly happening in these high mach plumes as shown through the

discussion in Section 4.5. The experimental analysis of this data is not confined to

this type of work, as there are many fields that require a foundational approach to

extracting rovibrational temperatures for not only C2 Swan and CN Violet but for

other spectra as well. The model that was developed can be applied to any portion of

the C2 Swan and CN Violet band systems can easily be adapted to other molecular

band systems as well. The commercial and scientific communities such as thin film

production and laser induced breakdown spectroscopy will benefit from the work

done here as it serves to not only provide insights, but to also guide understanding

and laboratory efforts. The key results will be highlighted in the following sections.

Following that, a guide for future work will be laid out in order to aid those continuing

these efforts.

5.1 Molecular Temperatures

The rovibrational temperatures for both the C2 Swan (0,0) and (1,1) band as well

as the CN Violet ∆v = 0 sequence have been successfully extracted using models

based in PGOPHER. The rotational temperatures for the C2 Swan system varied

from 6,000 K down to 3,700 K in a linear trend over t = 0 − 10 µs. The rotational

temperatures did not depend on the background gas, nor did the vibrational tem-

peratures. The vibrational temperatures varied less linearly from 7,000 K down to

3,000 K. The background gas did not matter except for the special case of helium
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where the vibrational temperature decreased rapidly and then approached the tem-

peratures with the other background gases. The temperature ratio for C2 varied from

1.2 down to 0.78. The intensity of the C2 Swan band was approximately an order of

magnitude higher than the CN Violet. The decrease in inensity of C2 relative to CN

suggests that C2 is involved in the mechanism of creating CN. The CN rotationaly

temperatures were less time dependent compared to the C2. However, there was an

increase of approximately 700 K in the rotational temperature when the background

gas was N2 as opposed to air. The vibrational temperature increased by almost 2,000

K between the same two background gases. The vibrational temperature was much

higher than the rotational temperature with the ratio hovering between 2.2 and 1.8

throughout the time interval. Although the temperatures were different between the

two molecules, an important similarity was that neither of the two had rotational

and vibrational temperatures in equilibrium, which is extremely important for under-

standing the mechanism.

5.2 Shock Front Analysis

Centerline intensities were used to calculate the shock front propagation of the

plume resulting from the laser ablation of graphite. The plumes initial velocities

were on average 1.46 cm/µs, which equates to anywhere from Mach 19 to Mach 57

depending on the background gas.The stopping distance in the drag model varied

between 0.5 cm and 1.6 cm based upon the background gas and pressure. The drag

model did a better job fitting the shock front expansion than the Taylor-Sedov model.

Fitting the Taylor-Sedov model to the shock fronts gave an average n value of 2.74,

which suggests the blast wave is somewhere between a spherical and cylindrical wave,

which is to be expected given the laser profile. The C, C2, and Ar filtered shock fronts

all began to diverge from each other after 150 ns, and they were noticeably separated

59



www.manaraa.com

at about 1 µs. The effects of background pressure on the plume’s shock front was

also investigated. The stopping distance was tripled when the background gas was

lowered by a factor of 10, and the intial expansion velocity increased by about 20%.

There are secondary shocks that develop in the data that were not analyzed, and

it would require tweaking some theory to try to fit similar models and compare the

results due to the plume splitting.

5.3 Recommendations Future Work

This work did a large amount of analyzing and processing the spectroscopic data;

however, it created many more questions than answers. One foundational piece that

was missing was CN filtered imagery. This will be key in understanding the location

of CN formation relative to the shock, and a future experiment to look at that would

be invaluable.

While optical emissions spectroscopy is a useful tool, it is limited in that no data

is obtained on the non-emitting species. Another form of active spectroscopy could

be a contribution to understanding the mechanism. Setting up an laser induced

florescence or absorption experiment would provide a way to look at the ground state

populations, which would aid in understanding the formation mechanisms.

Another possible experiment would be to reprocess the data using PGOPHER

with numerical populations. There are ways to alter the PGOPHER model to accept

numerical populations for each state. This would allow for possible non-equilibrium

fitting of the spectra.

Setting up imagery that captures different orientations will help to investigate the

v-shaped plume phenomena shown in Appendix C. It will be extremely important to

understand this, since it fairly undocumented in the literature until recently.

If optical emissions spectroscopy were to be done again, moving the spectrometer
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location would be another extremely important experiment. Having the spatially re-

solved data as well as the temporally resolved data would help to understand why the

helium spectra looked so different from the other background gases, as it is potentially

due to where the spectrometer FOV is relative to the shock front location.
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Appendix A. Molecular Constants and Einstein A
Coefficients for C2 Swan and CN Violet PGOPHER Models

All of the molecular constants for the C2 Swan and CN Violet models in PGO-

PHER are displayed here, as well as the asssociated Einstein A coefficients that were

used to calculate the transition moments. The C2 Swan model used v = 0− 9 vibra-

tional states for the a3Πu ground state and the v = 0− 10 vibrational states for the

d3Πg electronic state. The CN Violet model used the v = 0 − 15 vibrational states

for both the X2Σ+ and the B2Σ+ electronic states. The C2 Swan molecular constants

and Einstein A coefficients are displayed first, followed by the CN Violet molecular

constants and Einstein A coefficients.
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Table 9. Molecular constants for a3Πu and d3Πg states of C2 used in the simulations. (Adapted from [51])

State v Tv A AD B D × 106 λ o p q

0....... 0 -15.26912 (20) 0.0002388 (33) 1.6240451 (22) 6.45068 (84) -0.15490 (25) 0.67539 (20) 0.002465 (24) -0.0005319 (20)
1....... 1618.02330 (31) -15.25176 (27) 0.0002029 (32) 1.6074301 (20) 6.44478 (84) -0.15355 (21) 0.66997 (21) 0.002697 (20) -0.0005779 (18)
2....... 3212.72262 (41) -15.23388 (63) 0.0001684 (41) 1.5907615 (27) 6.4581 (18) -0.15206 (50) 0.66308 (57) 0.003068 (33) -0.0006472 (21)
3....... 4784.1113 (31) -15.2262 (52) 0.000106 (21) 1.574009 (12) 6.4573 (95) -0.1592 (44) 0.6496 (44) 0.00352 (21) -0.0007679 (76)

a3Πu 4....... 6332.1373 (22) -15.2031 (30) 0.000185 (17) 1.557175 (14) 6.444 (17) -0.1448 (33) 0.6504 (30) 0.00527 (17) -0.0008912 (71)
5....... 7856.8242 (17) -15.2009 (25) 0.000005 (13) 1.540145 (11) 6.349 (15) -0.1443 (23) 0.6394 (20) 0.00646 (12) -0.0012316 (55)
6....... 9358.1728 (23) -15.1586 (36) 0.000226 (17) 1.523437 (14) 6.101 (19) -0.1416 (27) 0.6491 (28) 0.00403 (16) -0.0006443 (73)
7....... 10836.1550 (45) -15.0856 (64) 0.00046 (15) 1.50875 (12) 3.05 (39) -0.1478 (48) 0.6538 (65) -0.0283 (14) 0.00685 (26)
8....... 12290.903 (27) -15.247 (57) -0.00006 (10) 1.48789 (18) 3.71 (12) -0.082 (36) 0.735 (43) 0.0033 (31) -0.00202 (19)
9....... 13722.1096 (33) -15.0808 (53) 0.000482 (24) 1.472691 (21) 5.793 (40) -0.1662 (20) 0.6516 (43) 0.00296 (32) -0.000207 (18)

0....... 19378.46446 (30) -14.00111 (28) 0.0004803 (37) 1.7455695 (20) 6.82103 (66) 0.03303 (20) 0.61085 (22) 0.003947 (20) -0.0007762 (18)
1....... 21132.13960 (13) -13.87440 (24) 0.0005495 (43) 1.7254012 (25) 6.9647 (13) 0.03018 (27) 0.61703 (21) 0.004181 (25) -0.0008310 (22)
2....... 22848.4150 (30) -13.8444 (49) 0.000655 (23) 1.704494 (13) 7.360 (11) 0.0108 (43) 0.6205 (43) 0.00431 (20) -0.0009841 (69)
3....... 24524.2222 (11) -13.5329 (18) 0.000637 (11) 1.6814609 (79) 7.490 (11) 0.0515 (15) 0.5724 (14) 0.005213 (85) -0.0008519 (40)

d3Πg 4....... 26155.0003 (49) -13.3557 (89) 0.000621 (28) 1.657484 (17) 8.095 (12) 0.0448 (55) 0.5382 (60) 0.00439 (23) -0.0010884 (82)
5....... 27735.6847 (26) -13.0264 (47) 0.000582 (22) 1.630248 (15) 8.694 (18) 0.0823 (29) 0.5633 (32) 0.00541 (18) -0.0008693 (70)
6....... 29259.704 (14) -13.082 (35) 0.00052 (fixed) 1.599841 (19) 9.0 (fixed) 0.062 (14) 0.559 (16) 0.00104 (65) -0.001514 (17)
7....... 30717.9217 (33) -12.3299 (58) 0.000903 (28) 1.565922 (22) 9.787 (42) 0.0901 (20) 0.5127 (43) 0.00901 (30) -0.001283 (15)
8....... 32102.6713 (90) -12.0890 (95) 0.00052 (fixed) 1.52672 (12) 9.58 (39) 0.046 (12) 0.4915 (96) 0.00457 (84) -0.000863 (84)
9....... 33406.325 (28) -11.785 (66) 0.00052 (fixed) 1.48487 (18) 10.04 (14) 0.232 (43) 0.564 (49) -0.0014 (28) -0.00201 (20)
10....... 34626.8093 (47) -11.2469 (79) 0.00052 (fixed) 1.440994 (34) 12.544 (48) 0.1162 (65) 0.3578 (64) 0.00702 (47) -0.001119 (20)63
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Table 10. Einstein Av′v” values for d3Πg – a3Πu transitions used in the simulations. (Adapted from [40])

v′

v′′ 0 1 2 3 4 5 6 7 8 9 10

0 7.626 (+6) 2.814 (+6) 2.809 (+5) 4.333 (+3) 2.033 (+2) 3.642 (+1) 2.470 (-2) 2.140 (-1) 9.989 (-4) 3.827 (-3) 3.140 (-9)
1 2.135 (+6) 3.427 (+6) 4.072 (+6) 6.429 (+5) 8.720 (+3) 1.608 (+3) 1.591 (+2) 2.744 (+0) 1.822 (+0) 4.947 (-2) 3.540 (-2)
2 3.832 (+5) 2.746 (+6) 1.270 (+6) 4.422 (+6) 9.615 (+5) 7.432 (+3) 6.154 (+3) 3.223 (+2) 6.379 (+1) 4.108 (+0) 1.567 (+0)
3 5.590 (+4) 8.273 (+5) 2.568 (+6) 3.236 (+5) 4.301 (+6) 1.168 (+6) 1.085 (+3) 1.805 (+4) 1.707 (+2) 3.472 (+2) 1.346 (-2)
4 7.224 (+3) 1.710 (+5) 1.169 (+6) 2.066 (+6) 2.505 (+4) 4.005 (+6) 1.149 (+6) 4.993 (+3) 3.581 (+4) 1.535 (+2) 9.452 (+2)
5 8.592 (+2) 2.886 (+4) 3.215 (+5) 1.352 (+6) 1.510 (+6) 1.513 (+4) 3.459 (+6) 1.120 (+6) 5.272 (+4) 4.975 (+4) 4.445 (+3)
6 9.574 (+1) 4.280 (+3) 6.793 (+4) 4.745 (+5) 1.381 (+6) 1.038 (+6) 8.028 (+4) 3.438 (+6) 8.558 (+5) 1.863 (+5) 4.075 (+4)
7 1.006 (+1) 5.775 (+2) 1.218 (+4) 1.218 (+5) 6.009 (+5) 1.302 (+6) 6.443 (+5) 1.343 (+5) 3.253 (+6) 4.834 (+5) 4.111 (+5)
8 9.931 (-1) 7.206 (+1) 1.945 (+3) 2.582 (+4) 1.830 (+5) 6.840 (+5) 1.087 (+6) 4.546 (+5) 1.285 (+5) 3.081 (+6) 1.342 (+5)
9 9.005 (-2) 8.335 (+0) 2.828 (+2) 4.785 (+3) 4.495 (+4) 2.421 (+5) 6.721 (+5) 9.993 (+5) 3.120 (+5) 8.080 (+4) 2.824 (+6)
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Table 11. for X2Σ+ and B2Σ+ states of CN used in the simulations. (Adapted from [52])

State and Equilibrium Constants v Tv Bv Dv × 105 Hv γv γDv

0 0 1.891090248(84) 0.640771(18) 6.277(17)E-12 7.25393(56)E-3 -9.1(11)E-9
1 2042.42135(11) 1.873665679(78) 0.641647(18) 5.984(17)E-12 7.17190(82)E-3 -1.12(12)E-8
2 4058.54930(11) 1.856187457(76) 0.642639(18) 5.678(18)E-12 7.0801(12)E-3 -1.75(15)E-8

X2Σ+ 3 6048.34449(17) 1.83865289(13) 0.643809(23) 5.510(34)E-12 6.9798(14)E-3 -2.43(36)E-8
ωe = 2068.68325(99) 4 8011.76770(17) 1.82105955(22) 0.645051(29) 5.204(52)E-12 6.8636(16)E-3 -3.67(52)E-8
ωexe = 13.12156(45) 5 9948.77678(17) 1.80340446(25) 0.646440(35) 5.014(91)E-12 6.7213(16)E-3 -5.87(76)E-8
ωeye = -0.005426(74) 6 11859.32865(19) 1.78568518(26) 0.647525(51) ... 6.5456(17)E-3 ...
ωeze = -9.82(40)E-5 7 13743.37581(21) 1.76789886(23) 0.649207(93) ... 6.3134(16)E-3 ...
Be = 1.8997872(28) 8 15600.87043((26) 1.75004067(30) 0.65094(18) ... 6.0118(18)E-3 ...
α1 = -0.0173802(27) 9 17431.75566(40) 1.73210142(28) 0.65297(56) ... 5.6130(25)E-3 ...
α2= -2.235 (69)E-5 10 19235.96013(45) 1.71404986(30) 0.66358(75) ... 5.2324(30)E-3 ...
α3 = -6.64(48) E-7 11 21013.29410(84) 1.695088(22) 0.192(14) -9.19(23)E-9 1.434(16)E-2 -8.111(76)E-5
re(Å) = 1.17180630(86) 12 22765.7282(10) 1.677608(27) 1.231(21) 1.099(47) E-8 1.3297(18)E-1 -2.274(11)E-4

13 24488.7305(13) 1.659501(23) 0.6610(68) ... 1.777(20)E-2 ...
14 26185.6928(18) 1.641413(46) 0.742(27) ... 1.179(25)E-2 ...
15 27856.2000 1.62261(12) 0.617(46) ... 3.5(17)E-3 ...

0 25797.87041(49) 1.9587206(15) 0.659524(62) ... 1.7153(60)E-2 -6.81(31)E-7
1 27921.46673(58) 1.9380395(52) 0.67308(33) ... 1.8162(95)E-2 -8.96(93)E-7

B2Σ+ 2 30004.90702(83) 1.916503(12) 0.7031(32) ... 1.839(15)E-2 -2.40(69)E-6
Te = 25752.590(12) 3 32045.94782(75) 1.894182(17) 0.7115(69) ... 2.453(18)E-2 -7.3(13)E-6
ωe = 2162.223(30) 4 34041.97171(62) 1.8704798(76) 0.7451(17) ... 2.117(11)E-2 -5.18(41)E-6
ωexe = 19.006(22) 5 35990.0982(24) 1.847108(28) 0.9139(61) ... 4.27(96)E-3 1.693(45)E-4
ωeye = -0.1346(65) 6 37887.42564(54) 1.8193419(61) 0.8099(12) ... 2.524(10)E-2 -8.53(31)E-6
ωeze = -0.03673(85) 7 39730.53557(59) 1.790760(14) 1.1049(67) ... 6.098(67)E-3 ...
ωeηe = 0.001430(37) 8 41516.64447(62) 1.7621439(66) 0.9058(14) ... 3.488(11)E-2 -1.985(36)E-5
Be = 1.96797(41) 9 43242.98520(78) 1.730286(14) 0.9254(67) ... 1.576(12)E-2 -1.937(41)E-5
α1 = -0.01881(18) 10 44908.7939(11) 1.696076(40) 0.313(40) ... 2.4897(38)E-1 -1.7970(62)E-3
α2 = -0.000643(16) 11 46511.39737(85) 1.664979(12) 1.0253(31) ... 2.161(16)E-2 -1.866(62)E-5
re(Å) = 1.15133(12) 12 48053.7308(11) 1.629785(33) 1.846(22) ... -9.17(26)E-3 -7.56(25)E-5

13 49537.3409(13) 1.598044(22) 1.0871(61) ... 3.344(25)E-2 -2.565(72) E-5
14 50964.5889(26) 1.564126(94) 1.207(41) ... 3.49(49)E-3 ...
15 52340.0287(20) 1.53238(13) 1.220(60) ... 8.61(17)E-2 -2.334(28)E-4
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Table 12. Einstein Av′v” values for B2Σ+ – X2Σ+ transitions used in the simulations. (Adapted from [52])

v′

v′′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1.50E+07 1.61E+06 2.24E+04 3.04E+02 3.22E+01 7.10E-02 8.17E-05 8.69E-03 2.43E-04 2.21E-04 2.39E-03 5.53E-03 2.94E-03 5.05E-06 3.06E-03 5.61E-03
1 9.41E+05 1.25E+07 2.89E+06 4.82E+04 2.00E+03 1.51E+02 1.89E+00 6.04E-04 5.64E-02 9.67E-03 4.46E-02 1.34E-02 3.08E-04 1.06E-03 2.80E-03 3.26E-03
2 4.34E+04 1.65E+06 1.05E+07 3.85E+06 6.21E+04 7.36E+03 3.79E+02 1.66E+01 3.35E-01 6.12E-02 3.15E-05 7.72E-02 3.35E-02 1.63E-04 3.96E-03 3.67E-03
3 1.61E+03 1.21E+05 2.12E+06 8.93E+06 4.52E+06 5.47E+04 2.00E+04 5.49E+02 9.12E+01 1.13E+00 1.47E-03 1.19E-01 4.65E-02 1.29E-01 2.90E-02 1.98E-04
4 6.07E+01 6.11E+03 2.18E+05 2.39E+06 7.76E+06 4.93E+06 2.90E+04 4.35E+04 3.74E+02 3.52E+02 1.86E-01 7.17E-01 3.04E-01 5.11E-03 2.00E-01 1.58E-01
5 2.63E+00 2.71E+02 1.42E+04 3.21E+05 2.49E+06 6.94E+06 5.08E+06 2.85E+03 7.86E+04 3.13E-01 9.33E+02 9.52E+00 4.97E+00 2.84E-02 3.20E-01 4.18E-02
6 6.24E-02 1.26E+01 7.42E+02 2.57E+04 4.18E+05 2.45E+06 6.43E+06 4.98E+06 1.41E+04 1.19E+05 1.57E+03 1.67E+03 1.35E+02 7.56E+00 1.51E+00 5.58E-01
7 2.67E-03 4.26E-01 3.67E+01 1.56E+03 3.96E+04 4.98E+05 2.30E+06 6.18E+06 4.60E+06 1.18E+05 1.47E+05 1.10E+04 1.76E+03 6.59E+02 2.87E-02 1.13E+01
8 3.87E-03 1.98E-03 1.36E+00 8.04E+01 2.75E+03 5.44E+04 5.59E+05 2.06E+06 6.15E+06 3.95E+06 3.75E+05 1.39E+05 3.66E+04 4.94E+02 1.74E+03 9.18E+01
9 5.85E-04 1.86E-02 2.69E-03 3.16E+00 1.51E+02 4.31E+03 6.78E+04 5.97E+05 1.76E+06 6.30E+06 3.05E+06 8.17E+05 8.24E+04 8.04E+04 8.19E+02 2.50E+03
10 1.44E-05 6.77E-03 6.00E-02 4.02E-05 6.25E+00 2.52E+02 6.09E+03 7.78E+04 6.17E+05 1.42E+06 6.54E+06 1.98E+06 1.40E+06 1.20E+04 1.24E+05 1.28E+04
11 5.33E-11 8.99E-04 2.52E-02 1.18E-01 4.04E-03 1.06E+01 3.77E+02 7.89E+03 8.27E+04 6.22E+05 1.06E+06 6.75E+06 9.41E+05 1.96E+06 2.63E+04 1.29E+05
12 2.82E-07 3.30E-05 3.75E-03 6.53E-02 1.99E-01 1.83E-02 1.62E+01 5.17E+02 9.48E+03 8.11E+04 6.21E+05 7.14E+05 6.79E+06 1.96E+05 2.24E+06 2.51E+05
13 8.22E-08 2.45E-07 1.75E-04 1.32E-02 1.39E-01 3.03E-01 4.45E-02 2.22E+01 6.45E+02 1.07E+04 7.27E+04 6.19E+05 4.19E+05 6.49E+06 2.04E+04 2.04E+06
14 − 2.37E-07 1.51E-08 1.01E-03 3.58E-02 2.48E-01 4.29E-01 5.16E-02 2.74E+01 7.29E+02 1.14E+04 5.83E+04 6.24E+05 2.02E+05 5.77E+06 5.34E+05
15 − − 8.83E-07 9.44E-06 3.93E-03 7.75E-02 4.13E-01 6.11E-01 1.84E-02 3.07E+01 7.36E+02 1.17E+04 3.99E+04 6.37E+05 7.27E+04 4.64E+06
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Appendix B. Error Analysis for Shock Models

The details of the error analysis for the various parameters of the Taylor-Sedov

model and the drag model are detailed below. First, the Taylor-Sedov model is treated

followed by the drag model.

2.1 Taylor-Sedov Model

The Taylor-Sedov model is described below:

R(t) = ξ
(E
ρb

) 1
n+2

t
2

n+2

For the purposes of fitting, we can simplify it to R = atb where a = ξ
(
E
ρb

) 1
n+2

and

b = 2/(n + 2). Thus, the error in ξ
(
E
ρb

) 1
n+2

is simply the error in a, but the error in

n is slightly different. First, rearranging to solve for n in terms of b yields

n =
2

b
− 2

Therefore, the error in n is

δn =
∂n

∂b
δb =

2

b2
δb (18)

2.2 Drag Model

The drag model is described by

R(t) = Rs(1− e−kt)

where Rs is the stopping distance and k is the slowing term. We know from Section

2.2 that the initial velocity is simple v0 = kRs. When fitting the drag model Rs gets
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fit directly so there is no need to propagate its error. However, the error propagation

for v0 is as follows

δv0 =

[(
∂v0

∂Rs

δRs

)2

+

(
∂v0

∂k
δk

)2
] 1

2

=
[
(kδRs)

2 + (Rsδk)2
] 1

2
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Appendix C. Plume Reversal

This section is meant to detail a phenomena only recently seen in the imagery

data. In some background gases, the plume seems to reverse direction and head

back towards the graphite target. This feauture is most prominent in a helium back-

ground. The V-shape structure was just only recently published by another research

group. This appendix serves as documentation that a similar structure was seen in

our experiments as well.
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Figure 42
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Appendix D. Shock Front Fits

The shock front fits from the ICCD imagery mentioned in Section 4.2 are presented

here. The filter and background gases for the shock fronts not shown previously, and

the corresponding figure numbers are:

Figure 43: No filter and 10 Torr Air background

Figure 44: 520 nm filter and 10 Torr Air background

Figure 45: 830 nm filter and 10 Torr Air background

Figure 46: No filter and 10 Torr Ar background

Figure 47: 520 nm filter and 10 Torr Ar background

Figure 48: 830 nm filter and 10 Torr Ar background

Figure 49: No filter and 10 Torr He background

Figure 50: 520 nm filter and 10 Torr He background

Figure 51: 830 nm filter and 10 Torr He background

Figure 52: No filter and 1 Torr N2 background

Figure 53: No filter and 10 Torr N2 background

Figure 54: 520 nm filter and 10 Torr N2 background

Figure 55: 830 nm filter and 10 Torr N2 background

Figure 56: No filter and vacuum

Figure 57: 520 nm filter and vacuum

Figure 58: 830 nm filter and vacuum
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Figure 43. The shock front propagation is shown for an air background pressure of 10
Torr with no filter on the ICCD array.
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Figure 44. The shock front propagation is shown for an air background pressure of 10
Torr with a 520 nm filter on the ICCD array.
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Figure 45. The shock front propagation is shown for an air background pressure of 10
Torr with a 830 nm filter on the ICCD array.
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Figure 46. The shock front propagation is shown for an argon background pressure of
10 Torr with no filter on the ICCD array.
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Figure 47. The shock front propagation is shown for an argon background pressure of
10 Torr with a 520 nm filter on the ICCD array.
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Figure 48. The shock front propagation is shown for an argon background pressure of
10 Torr with a 830 nm filter on the ICCD array.
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Figure 49. The shock front propagation is shown for a helium background pressure of
10 Torr with no filter on the ICCD array.
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Figure 50. The shock front propagation is shown for a helium background pressure of
10 Torr with a 520 nm filter on the ICCD array.
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Figure 51. The shock front propagation is shown for a helium background pressure of
10 Torr with a 830 nm filter on the ICCD array.
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Figure 52. The shock front propagation is shown for a nitrogen background pressure
of 1 Torr with no filter on the ICCD array.
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Figure 53. The shock front propagation is shown for a nitrogen background pressure
of 10 Torr with no filter on the ICCD array.
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Figure 54. The shock front propagation is shown for a nitrogen background pressure
of 10 Torr with a 520 nm filter on the ICCD array.
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Figure 55. The shock front propagation is shown for a nitrogen background pressure
of 10 Torr with a 830 nm filter on the ICCD array.
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Figure 56. The shock front propagation is shown in a vacuum with no filter on the
ICCD array.
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Figure 57. The shock front propagation is shown in a vacuum with a 520 nm filter on
the ICCD array.
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Figure 58. The shock front propagation is shown in a vacuum with a 830 nm filter on
the ICCD array.
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